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Abstract

This paper develops a technique for bounding the maximum voltages

and currents at terminations of a multiconductor transmission line (MTL)

located behind an aperture-perforated conducting screen excited by an

electromagnetic field in the frequency domain. The electromagnetic field

is coupled through a small aperture as the excitation of a multiconductor

transmission line behind the aperture. A model is presented in terms of

external and internal sources which in turn create traveling waves on the

multiconductor transmission line. These traveling waves transfer energy

to the terminations. The energy at a termination is translated into

voltages and currents from which the upper bounds are determined. These

upper bounds are obtained using vector norms and associated matrix norms.

The formulation is presented in the frequency domain to obtain useful

upper bounds for analysis of multiconductor transmission line geometries

with aperture excitation.
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Introduction

In designing some systems, the designer should be able to character-

ize the penetration of electromagnetic pulses (4P) or lightning signals

through apertures of general shapes as well as quantify the effects of

the coupled energy on transmission lines located in the vicinity of the

aperture. Apertures that are of concern to the designer are usually

electromagnetically small over the spectrum of the EMP, or lightning,

and their existence may be for some purpose, e.g., windows, open access

holes, or they may be unintentional as in the case of cracks around

doors or plates covering access ports or poor electrical seams. The V
analysis of the coupling (penetration) problem has been investigated

by a large number of people since 1897. The first scientist to propose

a solution was Lord Rayleigh [], whose solution was expressed as an

ascending power series of the wavenumber k( - n ) where X is the wave-

length. Others include Bethe [2], Bouwkamp [3], and more recently

Butler [4].

The coupling of the energy from an incident electromagnetic wave

to a transmission line located behind an aperture-perforated conducting

screen has also been investigated by many engineers and physicists in

the past decade. Kajfez [5] has computed the coupled energy by the use

of equivalent electric and magnetic dipole moments along with both mode-

matching and reciprocity techniques to obtain equivalent sources of a

transmission line model. Butler and Umashankar [6] have approached the

problm numerically by the method of moments, and have formulated integro-

differential equations for a finite-length wire with arbitrary orientation

behind an arbitrarily shaped aperture. Davis [7] has developed a method

for bounding the maximum voltage and current levels at terminations of a

/.



single wire behind an aperture.

This paper extends the bounding problem of a single wire to the

problem of obtaining an upper bound for the computation of the voltages

and currents at terminations of multiconductor transmission lines (MTL)

located behind an aperture-perforated conducting screen. A brief sumary

of the system model will be given, followed by a more detailed discussion

of the signal computations and the resultant upper bounds.

System Model

A typical multiconductor transmission line (MTL) problem of interest

is shown in Fig. 1. The aperture A is the source of coupled energy

which is modeled by a pair of electric and magnetic current dipoles above

a closed aperture as shown in Fig. 2. It is easily shown, from the small

aperture theory as used by Kajfez [8], that these point source amplitudes

are given by
= ̂ j€ e~sc- -

cec jwea E yc (1)e eyy - e y

and

m c mxX - -Jwuam,xxHx sci (2)

respectively, where w is radian frequency, a e and am,xx are the required

polarizabilities of the aperture and E sc- and Hsc- are the electromagnetic

fields below the aperture with no aperture present. The H sc- is of noz

importance to the problem and has been neglectedjas have the low level

aperture fields of the MTL. In the process of bounding, E Sc- and H sc-y x

are assumed to be given while the a and a may either be given by the• m,xx

appropriate geometry related coefficients or bounded by the polarizabi-

lities of an ellipse which circumscribes the aperture [7].

We will restrict the MTL to be in a vacuum environment and to

consist of N parallel wires. In such a case there are N transverse
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Figure 1. A multivire transmission line (MTL) parallel
to a plane with aperture A.

Figure 2. Model of the aperture as replaced by
equivalent current dipoles.



electromagnetic (TEI) modes possible on the MTL. The equations that

govern these modes are

dz V > W -JwLiL > (3)

and

di > - -JJV • (4)

where IV > and It > are vectors representing the N wire voltages and

N a-directed wire currents. The induction matrix L and capacitive co-

efficient matrix K represent respectively the inductive and the capacitive

effects of the MTL. The current II > is equal to (cIQL > ) for z-directed

propadation, c - speed of light, which gives the corresponding charge

def initionI% • -Ev s i

IQL> - .KtV > (5)

Thus K may be found from a two-dimensional capacitive boundary value

problem. The matrix L is then given by the inverse

L _ (6)
c

The solutions to (3) and (4) may be written as

N

IV > I (aie-z + bieiB)*i > (7)
i-l

and

N eJ~z_ j8(8
1I > - I (aie -bbieJ )cKj i > (8)

i-I

where B - w/c and the summation is over the N voltage modes 10i >. The

141 > are orthogonal and are normalized in the following inner product

sense for unit power:



C <*l > -6(9)

It is convenient to choose the I i > to be the eigenvectors of K to givei

x c < ilo > i (10)

where X is the jth eigenvalue of K. With these definitions, the net

power at any point on the MTL is given by

N I (jail2 - bil2). (11)
i=l

Eqs. (7) and (8) may be written in more compact form as

IV > _ N(la > e + lb > eJ'z) (12)

and

II > c_(Ia > e-j~z - lb > eJ z) (13)

and modeled as in Fig. 3 where

The matrices 0 and 0 of Fig. 3, represent the phase delay between the

aperture and terminations, L3 and 4. The traveling wave sources a s >

and lb a > represent the aperture coupling to the MTL.

The sources are obtained using the reciprocity relation

f (Ea' b -a "amb- Eo " a+ Hb " ma)d v
V

-- f (E axH1 2 Ebx H a) ds (14)

av
where the m subscript refers to magnetic current sources. For each

voltage mode 10i > the corresponding electromagnetic field intensities

are ei and hi respectively, where for n -/E

• -" .,,,,. -.. .. v. ,., ,:. j . I .. .- " - , .1. ... i
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Figure 3. The zeroth-order signal flow graph.

Figure 4. Cross section of two-conductor
transmission line.



r z ~Xe (15)

The total iand RI have expansions similar to (7) and (8). Letting E a' al

j and J mabe equal to E, R, e6(;), C6(r) respectively (6(-r) the 3-D

Dirac delta), then using e i and h i with ejZ for Eband Hb

asi M12[-ce - Cmxlyi(6 (16)

and

bsi . V-cey + cx/njeyi(6), (17)

or equivalently

as > V1Cey -cmxInhIey > (18)

and

lb9 > -(cy + c /nle~ > (19)

Once the distances Z3and L~4 and the termination voltage reflection

matrices-E and 4 are known, the total termination voltages may be

obtained. These reflection matrices are given by

lb > e+j$8Z4 - 41a> e-a, (20a)

and

I a > e-J $3 . L3 1b > e+ 1 (20b)

and the delay matrices by

OR- e-JB14 I (21a)

and

- e-J1 I (21b)

where I is the N x N identity matrix. Concentrating on the termination



at Z4'

IV4 > V1 + 4 [1 -L3_4 e-j2B -1

x [Ias > +r 3 e-J 2 SZ31bs > ]e-JU4" (22)

is the matrix of (12) and the second term accounts for the sum of

la > and lb > . The inverse term accounts for the multiple reflections

ca the line with Z corresponding to the total line length. The remaining

terms account for the source. The corresponding current may be obtained

simply by replacing N[I + 4 of (22) by c_[I -4].

Bounds

The problem may now be stated as obtaining the upper bound of the

voltage AV between any two wires at z - Z4. This voltage can not exceed

twice the voltage of any wire to the ground plane. Thus

fAvj ___ <S 2j 11IV4>

where the infinity norm of IV4 > is the maximum absolute value IV4iI over

the wires. However, the infinity norm of a vector is less than or equal

to the two norm given by

IV4 > 12= /IV4 1 12 + . + IV4N12

to give

2 (23)[IJVma __ 11 IV4> 112 (3

To complete the bounding process, three important properties of matrix

norms which follow are needed:



A - 0 if and only if A = 0

IA + BI- hAl + B
ii A B II-< jfAjl II B II,

along with the two norm of a matrix

11 A112 - [max(eigenvalue AtA]

where At is the conjugate transpose of A.

For passive terminations, the norms of both L 3 and L are less than

or equal to unity. With the norm of Mv given in terms of X. as

llIIv I = /1Vc mn(lXi)
2 i

the upper bound on AV becomes

11 II a s > I 2 I lb s > II
lAVl < 4 S> 112 + 11 f12  (24)

/c mn(i) (I - e- T)

where aT represents the minimum round-trip loss on the MTL associated with

the multiple reflections. Substituting for Ias> and lbs > from (18), (19),

(1), and (2), this upper bound becomes

4we IIle,> 112LleI y I+ lam,,I nHx -I]

(1 - e-nT)imn (25)
i

The corresponding maximum current Illmax is simply given by

II T= " 2 /max(Ai)min(Xi) . (26)
i - i -

4
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Example

As a simple example of using (25), we will consider the dual strip-

line geometry of Fig. 4 as described by Kajfez. The K for this geometry

may easily be obtained from two-dimensional electrostatics [8] asK 0 1 0-1
-1 1K: 0 -i0 15

with

X1  5eO ' A 2 = 25e 0

The appropriately normalized voltage eigenvectors of K are given by

1>  
10/ 'J' 2> I/ TT

The normalized electric field term is obtained by multiplying the J0i>

by K to obtain the corresponding IQLi> from (5). Reverting to the

electrostatic analysis, the short circuited field at the aperture may be

obtained to give

r12] r307.1
y .02 0ley> - L22 L 137.3 "

The remaining parameters are chosen to be

-3C T  - 90.652 x 10 (or ldB/100 ft.)

Esc- 1 100 kV/m
y
nHsc- = Esc

-

x y

and

a - aperture radius - 1 cm

where 10 120w and the line lengths L3 and A4 are 7 and 5 meters

respectively as used by Kajfez [8]. A circular aperture of radius 1 cm

results in polarizabilities of ae = 6.67 x 10- 7 and am,xx 2ae [7]. The



short circuited fields, Ese- and H sc- , correspond to a plane wave
y x

traveling along the surface.

Substituting in (25), the termination voltage for a radian frequency

w will not exceed

-7Ia < (2.38 x 10- )W V.

This forms a useful frequency-domain bound for the problem presented with

a voltage less than 10 Volts for frequencies below 6.7 MHz.

For comparison, this problem has been solved exactly for open-

circuit terminations on the MTL. For such a case

r - r - I

Determining the Ias> and lb > of Eq. (22) from (1), (2), (18) and (19),

the results were computed and are plotted in Fig. 4 along with the bound.

A modified bound is also plotted which represents the actual bound of

the particular problem. The difference in bounds is 4.1 which seems

slightly unreasonable until the bounding approach is examined. A factor

of two arises in the bound to account for a differential mode which does

not occur in the case considered. The triangle inequality used in the

bound of Ias> and lbs> contributes another 1.5. The product of the

2-norms of and e y> versus the r-norm of (_Nl ey>) contributes a 1.29

factor. A small contribution also occurs due to some of the neglected

loss terms. In light of these observations, the resultant bound is very

reasonable.
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Conclusion

This paper has presented an approach to bounding signal levels at

MTL terminations due to excitation by an aperture. The approach requires

knowledge of the external fields, maximum aperture dimension, cross

section of the MTL, and the length of the MTL. The results use no know-

ledge of the terminations. Such an approach is useful for systm hardness

evaluations in aircraft and other systems to D(P or other incident energy.

Acknowledgement

This work was sponsored by the Air Force Office of Scientific

Research under Grant AFOSR-80-0138. The United States Government is

authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright notation hereon.

References

[1] Lord Rayleigh, "On the passage of waves through apertures in plane
screen," Philos. Mag., Vol.43, No.263, April, 1897.

[21 H. A. Bathe, "Theory of diffraction by small holes," Phys. Rev.,
Vol.66, pp.163-182, 1944.

[3] C. J. Bouwkamp, "Diffraction Theory," Rep. Progr. Phys., Vol.17,
pp. 35-100, 1954.

[4] C. M. Butler, K. R. Umashankar, "A numerical solution procedure for
small aperture integral equations," Interaction Notes 212, AFWL,
Kirtland AFB, SI, Sept., 1974.

[5) D. Kajfez, Excitation of a terminated TE transmission line through
a small aperture," AFWL Interaction Note 215, July 1974.

[6] C. M. Butler and K. R. Umashankar, "Electromagnetic excitation of a
wire through an aperture-perforated conducting screen," IEEE Trans.
Ant. Prop., AP-24, pp. 456-462, July, 1976.

[7] W. A. Davis, "Bounding signal levels at wire terminations behind
apertures," USAF-SCEE Summer faculty research program. USAF Office
of Scientific Research, August, 1979.



181 1. ajfez, "Sull aperture on a ulti-conductor transmission line
filled with inhomogeneous dielectrics," ANL Interaction Notes 347,
November, 1977.

t



Ail


